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Surface waves in hot plasmas 

H C BARR and T J M BOYD 
Department of Applied Mathematics, University of Wales, UCNW, Bangor, UK 

MS received 18 October 1971. in revised form 10 March 1972 

Abstract. Vlasov’s equation and the full set of Maxwell’s equations are solved as an initial 
value problem in a semi-infinite plasma. On specifying boundary conditions, a dispersion 
relation is obtained for surface waves in two situations, one without a wave incident on the 
boundary, the other with such a wave. The former case includes all previous results LIS 

special cases. In the latter case, we find that surface waves cannot be excited by a wave 
incident on the boundary. 

1. Introduction 

Plasma boundaries are usually regarded as sources of mathematical complication in 
studies of wave propagation in plasmas. Landau (1946), in his paper on the propagation 
and damping of electrostatic plasma oscillations, also examined the penetration of an 
electromagnetic wave into a plasma half-space. There have been many subsequent 
studies of this class of problems, and Clemmow and Karunarathne (1970) have referred 
to much of this work. There is however a different situation in which boundaries, far 
from being merely a complication in the analysis, are essential to wave propagation. 
It has been known for some time that plasmas with vacuum or dielectric boundaries 
support waves which propagate along the surface of the plasma in addition to those 
which propagate within the plasma (Allis et a1 1963). 

Recently interest in surface plasma waves has revived, partly on account of wide- 
spread laboratory studies of the interaction between high power lasers and plasmas. 
Early work by Trivelpiece and Gould (1959) was restricted to an examination of electro- 
static surface waves on cold homogeneous plasmas which showed characteristic oscilla- 
tions at the frequency oP/,/2. Ritchie (1963) was the first to allow for temperature effects 
on the surface wave dispersion relation in a study of surface oscillations in metal foils. 
He applied the hydrodynamic electron theory of Bloch to an electron gas of uniform 
density and obtained a thermal correction to the cold plasma dispersion relation that 
was quite different from the corresponding contribution to the dispersion relation for 
bulk plasma waves. 

As in the case of bulk plasma waves one would expect a kinetic theory study based 
on the Vlasov equation to provide information not only about the propagation of plasma 
waves but also to determine the collisionless damping, if any. This has been carried out 
by Guernsey (1969), for the electrostatic limit, in work on a semi-infinite homogeneous 
plasma confined by a perfectly reflecting wall. An initial value problem was solved in 
the half-space using the (nonrelativistic) Vlasov equation. Guernsey found that the 
least damped contributions to the electric field in the plasma are of two types. One 
corresponds to the bulk plasma waves obeying the familiar Landau dispersion relation. 
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The second contribution describes surface waves and Guernsey has given a dispersion 
relation for these and evaluated it in the long wavelength limit, where he found that both 
the dispersion and the rate of damping of surface waves greatly exceed the corresponding 
quantities for bulk plasma waves. 

In all the work so far described, dispersion relations have been found only in the 
electrostatic limit. This restriction was relaxed in work by Vedenov (1965) who gave a 
dispersion relation for surface waves on a cold, homogeneous (metal) plasma with a 
plane boundary, using the full set of Maxwell's equations. Recently Kaw and McBride 
(1970) have found an equivalent relation for a temperate plasma using the fluid equa- 
tions for a homogeneous plasma confined in a half-space. 

The present calculation adopts a kinetic theory approach, and treats the most general 
case by solving, .as an initial value problem, Vlasov's equation with the full set of Max- 
well's equations. This is done in $2. Section 3 demonstrates how, on specifying the 
boundary conditions, the surface wave dispersion relation arises as a natural consequence 
of solving the initial value problem. We have obtained explicit dispersion relations for 
nonradiating surface waves and for the case of a wave incident on the boundary. Section 4 
evaluates the dispersion relation for the former case for cold and warm plasmas and 
compares it with previous results. 

2. The solution of Vlasov's equation in a plasma half-space 

We consider a multicomponent plasma which occupies the region z 2 0. Vlasov's 
equation for a species s, with charge e, and mass m,, is 

Assuming a small perturbation about a homogeneous isotropic equilibrium distribution 
f ; (U) ,  that is 

f?, U, t )  = f"ov)+f: (r ,  U, t )  

where I f ; [  << fo, the Vlasov equation gives 

From Maxwell's equations one has, as usual 

where 

j = 1 noses du yfS(r, U, t) .  
S 

We must specify a boundary condition for the distribution function at z = 0. In a 
physical situation the zero order distribution function would be inhomogeneous 
increasing from zero at the boundary. Unfortunately such a situation does not lend 
itself to an analytic treatment and we are therefore forced to consider an idealized 
boundary. Two models are commonly used : either a diffuse boundary such that f ;  = 0 
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on z = 0 in which the particles, arriving at the boundary, are scattered with complete 
loss of their drift velocity; or, more usually, a boundary where each species is reflected 
specularly, that is, f : ( U z ,  i = 0)  = f ;( - U , ,  z = 0). Reuter and Sondheimer (1949) 
in their treatment of skin effects in metals used a combination of the two boundary 
conditions. Since it lends itself to the easier analytic treatment, we will use the specular 
reflection condition. 

This can be achieved by definingfi for z < 0 such that 

f”l-z ,  C z )  = f S ( Z ,  - CJ 

Vlasov’s equation, (l), can then be made invariant in the transformation ( z  + -- :. 
U ,  + - u z )  if E is defined for z < 0 such that EiI  (parallel to the surface z = 0) is even 
in z and E ,  is odd. Then equation (1) is satisfied for all z .  

Taking Eourier transforms in space and Laplace transforms in time, that is, applying 

s:, dr exp( - ik . U) so‘ dt exp(iot) 

to equations (1) and (2), one has 

1 
i(k. U-o)  

and 

where 

Now 

4nj(k, w )  = 471 1 noses du uf s(k, U, o) 
S J 

where 

Separating the field into its longitudinal and transverse parts, that is E = ET + E L ( k / k ) ,  
we get 
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But 

Thus 

where 

Hence 

d@f ;/a4 
S k .  U - w  

W 2  W 
AT(k, W )  = k2 --- -- 

c2 c2 

AL(k,m) = 

w 

4 7 1 ~ ~  j du uf s(k, U ,  0)  
S = MI1 + R - ~ 1 noses 

c2 s k . v - w  ' 

EL(k ,o )  = - - - 
A q  ::) ( k k s )  
1 k x ( k x S )  

AT k 2  ' 
F ( k ,  CO) = - -~ 

( 5 )  

Note that AL = 0 is the usual electrostatic plasma wave dispersion relation and AT = 0 
that for transverse electromagnetic waves. 

Isolating the initial conditions in (8) and (9), we have 

1 kx(kxM11)  1 k x ( k x T )  
ET(k, CO) = - - 'p k2 AT k2 

where 
4710 T = R - - - - ~ n o s e s  J du ufs(k, U, 0) 
cz s k .  U - w  

contains all the initial conditions and M all the boundary onditions on z = 0. 

3. The surface wave dispersion relation 

To determine the surface wave dispersion relation one must specify the boundary condi- 
tions on the field vectors at z = 0. These are taken to be the continuity of the electric 
and magnetic fields parallel to the surface. Consider the case where the surface mode 
does not radiate, that is, the electric field in free space is given by 

E' = C exp(k,z) 

(note: the x, y ,  t dependence is assumed to be exp i(kl, . r l ,  -ut)). 
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Six equations are required to determine the unknowns C, dE(0, k ,, , w)/dz, E,(O, k 11, 0). 

(12) 

In free space, Poisson’s equation gives 

ik l l  . Cll + klC, = 0 

while in the plasma 

ik . E = 47t 1 noses f :  dv + 2E,(O, k , ,  , Q) 
S i 

therefore 

f”,k v,  0)  du 
S S k . v - u  ‘ 

i kALEL - i 1 oEsET .I (‘ff””’v) dv = 2E,(O, k l l  , o) - 4ni 1 noses 
k . V - o  

But 

J k . ~ - o  

and so 

S 

2E,(O, k l l  , o) - 4ni noses k .  V - - W  

Equating this with (8), we get 1 f”,’, C 2  - _ _  k - S. 
S o2 

2E,(O, k l I  , o) - 4ni noses k .  V - - W  

The continuity of Ell gives 

The continuity of Bll gives 

klCl, -iC,kl, = 

where 

(note: where we write J T m  dk,, it is to be understood that lim,,,,, J 2 r  dk, exp(ik,z) is 
intended). 
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The six required equations are (12H15). Equations (12), 

ikll  . CII +k,C, = 0 

1113 

14), (1 5 )  give respectively 

The surface wave dispersion relation is then 

Thus 

1 

Jm ( 2nkII - m  k2AL c2k2AT AT 
&, k i  02kZ ik,k, 4,i 9 0) = - 

= 0. 

(16) 

or 

(17) 
dk,(k,-ik,) -- k l l  Jm %( k2-(02/c2) -L)  

2n - m  k2 AT AL * 

In the electrostatic limit (c + CO), we have that AT + k2 

SI, !!!$ - - ni 

and so, from (1 7) 

This expression is identical to that derived by Guernsey (his equation (16)). 

that is, 
wave radiates). Then, including the reflected wave, we have 

E’ = C exp(ik;z) + D exp( - ikiz) 

Let us now consider the case where we have a plane wave incident on the boundary, 
= Cexp(ik:z) where k; = ((02/c2)-kfi}112 (or, inversely, that the surface 

where C i s  prescribed and D unknown. The boundary conditions give, as before 

ikl l  . (Cll +Dl,)+ik:(C,-D,) = 0 (124 
k M  

(144 
1 k M  

Cll+Dll = -Iy 2n dk,{(~)(-$+--&)~--$]+Kll 

ik;(CI1 -D,l)-i(Cz+Dz)kll  = --Mil i 
271 

Equation (13) does not change. Solving for MIl by eliminating Cl, + D l l  between (12a) 
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and (14a), Dll between (14a) and (15a), and D, between the resulting two equations. we get 

where 

PI = 2k:(k;C1, -C,kl )-ik;Ll1 +kr2Kl  -(klI . K , , ) k l  . 

Then 

where 

This is identical with equation (17), the only difference being notational: ikL = k;  

4. Approximate dispersion relation for warm plasmas 

For simplicity, we will consider a maxweliian electron plasma. Then 

w2 
AL = 1 + 3 2 y z ( 1  + y Z ( y ) )  

0 

- - 2  where J = w/Vek, V, = (2~T/m) '  2 ;  Z(y) = ( l / v /n )  Jce - dz/(z-y) is the usual plasma 
dispersion function. The asymptotic expansions of Z(y) are such that 

z -24.2 y << 1 

So for y >> 1 

w2 3V2k2 
A L ?  1 - 2  I+- &[ 2w2 ] 
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Substituting these asymptotes into (17), we get 

where we have taken w;V:/02cz << 1. This result can be compared directly with that of 
Kaw and McBride. 

The limitation of the above analysis is that it uses the long wavelength asymptotes 
( y  >> 1) for AL and AT over the whole range of integration of k,. Of course as k, + CO, 

this asymptote becomes invalid, but we still might expect the error to be small since the 
integrand becomes small in this region. 

To obtain a more accurate solution, we can split the range of integration into two 
regions: 0 < y < 1 and 1 < y < CO and use both asymptotes. We assume, as does 
Guernsey, that the region y - 1 contributes negligibly to the integrals. 

Note that y = 1 gives k, = {(w2/V:)-ki}112 = y say. Taking oZ,V:/02c2 << 1, 
evaluation of the integrals of (17) gives 

dk, k2 - (w2/c2) -&) = -; 2 tan-’( 4- i)  (‘1 2 J y  F( AT 

xtan-’(  l l  (w2/V2) ( 
- k i  ) ’” 

k2 + - w2)/c2 
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Combining the terms according to (17) we get, after some simple algebra 

1 (02/ Vf)  - kfi 1 2  
x --tan-] 

TI  ( k t  + (2w2(wi - w 2 ) / 3 4  V:) ' 

(24) 

Assuming long wavelengths, that is w/V& >> 1, we get 

When the electrostatic limit is taken this expression reduces exactly to Guernsey's 
equation (36) .  

Figure 1 shows a semilog plot of the roots of the dispersion relation ~ ( k , , ,  (U) = 0 
with 6 given by (24) for temperatures of 0.01, 1, 100 eV and, for comparison, a plot of 
Kaw and McBride's result (the broken curve) for 1 eV. The results are consistent in the 
electromagnetic region (small k l , )  but diverge in the electrostatic regime. We also note a 
spurious root at w = wp in Kaw and McBride's result which does not in fact exist 
(this can be seen either from (24),  or from (23)  which reduces to an identity as (U -+ cup). 

We note firstly that all the above results give, in the cold plasma limit 

This is in agreement with the result of Vedenov and Kaw and McBride and gives 
w = w p / J 2  in the electrostatic limit as expected. 

The differences in the results so far published appear only when we consider warm 
plasmas. Compare Kaw and McBride's equation ( 6 )  with our (23).  We notice two 
differences (i) w2 for 0,' on the left hand side and (ii) an extra factor w2jw; in the first 
parentheses of (23).  In the electrostatic limit ( c  -+ CO) (23)  reduces to 
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Figure 1. A semilog plot of the dispersion relation for surface plasma waves for temperatures 
of 0.01, 1,100 eV. The broken curve is the Kaw and McBride result for 1 eV. 

as compared with the 

of Kaw and McBride ; (26) compares more favourably with the electrostatic limit of (25), 
that is, Guernsey’s result 

Next, instead of specifying an initial value for the distribution function we investigate 
the response of a plasma to a wave incident on the boundary. In this case, o and kl l  
are real. In the region o < up, the dispersion relation is evaluated as above and is seen 
to give no roots. When we consider the region o > up, the evaluation of the integrals is 
complicated due to there being roots of AT and AL on or near the contour of integration. 
Since the Laplace transform is strictly defined only for I m o  > 0, it is necessary for 
situations where Im o < 0 to make an analytic continuation so that the dispersion 
relation is defined over the whole complex o plane, and in our situation especially along 
the real w line. This is achieved by deforming the contour such that we go around poles 
whenever Im k ,  > 0. The result is that we again find no roots for the dispersion relation. 
This leads us to conclude that we cannot couple an external electromagnetic wave 
with a surface mode although it may do so with a bulk wave. 

5. Discussion 

We have obtained an initial value solution of the Vlasov equation and the full set of 
Maxwell’s equations for a semi-infinite plasma assuming that the electrons are specularly 
reflected at the surface. This provides a general dispersion relation for surface waves 
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which contains all the dispersion and damping characteristics of such waves and includes 
all previous work as special cases. In the cold plasma limit, we are in agreement with 
earlier results, namely that we find a mode which is a mixture of electromagnetic and 
space charge waves propagating in the frequency range 0 to op/J2 ; in the electrostatic 
limit, this degenerates into a surface oscillation of frequency wp/J2. However. when we 
include finite temperature effects, certain disparities appear which lead to inaccurate 
dispersion characteristics, as was seen in the previous section. Comparison is most 
easily made in the electrostatic limit, where we see that values of the surface wave group 
velocity are overestimated. 

The work presented here and that mentioned previously has been restricted to 
plasmas with sharp boundaries. There have been fewer studies of plasmas which are 
not spatially homogeneous, that is, those in which the density increases into the plasma 
from the boundary. Trivelpiece (1967) considered the effect of density gradients in the 
dispersion relation for electrostatic surface modes on a cylindrical plasma column. 
More recently, similar studies for a plasma half-space appear in the work of Kaw and 
McBride. They derive a full surface wave dispersion relation (ie not restricted to the 
electrostatic limit) for a cold plasma with a weak density profile and, in addition, that 
for electrostatic surface modes for a cold plasma with a linear density profile of arbitrary 
strength. However, if op = 0 at the surface. it was found that electrostatic surface 
waves do not propagate so that the presence of surface charge (and therefore the pos- 
sibility of charge bunching) is essential for surface waves to exist. 

The principal results of this work are : 
(i) the general surface wave dispersion relation found ((17) and (22)) includes all 

earlier results. In the cold plasma limit it confirms a well known dispersion 
relation but highlights errors in warm plasma results appearing in the literature. 

(ii) i t  does not appear to be possible to couple a radiation field into surface plasma 
waves. 
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